GABA-B Controls Persistent Na+ Current and Coupled Na+-Activated K+ Current

نویسندگان

  • Ping Li
  • Richard Stewart
  • Alice Butler
  • Ana Laura Gonzalez-Cota
  • Steve Harmon
  • Lawrence Salkoff
چکیده

The GABA-B receptor is densely expressed throughout the brain and has been implicated in many CNS functions and disorders, including addiction, epilepsy, spasticity, schizophrenia, anxiety, cognitive deficits, and depression, as well as various aspects of nervous system development. How one GABA-B receptor is involved in so many aspects of CNS function remains unanswered. Activation of GABA-B receptors is normally thought to produce inhibitory responses in the nervous system, but puzzling contradictory responses exist. Here we report that in rat mitral cells of the olfactory bulb, GABA-B receptor activation inhibits both the persistent sodium current (INaP) and the sodium-activated potassium current (IKNa), which is coupled to it. We find that the primary effect of GABA-B activation is to inhibit INaP, which has the secondary effect of inhibiting IKNa because of its dependence on persistent sodium entry for activation. This can have either a net excitatory or inhibitory effect depending on the balance of INaP/IKNa currents in neurons. In the olfactory bulb, the cell bodies of mitral cells are densely packed with sodium-activated potassium channels. These channels produce a large IKNa which, if constitutively active, would shunt any synaptic potentials traversing the soma before reaching the spike initiation zone. However, GABA-B receptor activation might have the net effect of reducing the IKNa blocking effect, thus enhancing the effectiveness of synaptic potentials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contributions of voltage- and Ca2+-activated conductances to GABA-induced depolarization in spider mechanosensory neurons.

Activation of ionotropic gamma-aminobutyric acid type A (GABA(A)) receptors depolarizes neurons that have high intracellular [Cl(-)], causing inhibition or excitation in different cell types. The depolarization often leads to inactivation of voltage-gated Na channels, but additional ionic mechanisms may also be affected. Previously, a simulated model of spider VS-3 mechanosensory neurons sugges...

متن کامل

A novel GABAergic action mediated by functional coupling between GABAB-like receptor and two different high-conductance K+ channels in cricket Kenyon cells.

The γ-aminobutyric acid type B (GABA(B)) receptor has been shown to attenuate high-voltage-activated Ca(2+) currents and enhance voltage-dependent or inwardly rectifying K(+) currents in a variety of neurons. In this study, we report a novel coupling of GABA(B)-like receptor with two different high-conductance K(+) channels, Na(+)-activated K(+) (K(Na)) channel and Ca(2+)-activated K(+) (K(Ca))...

متن کامل

Contributions of Voltage- and Ca -Activated Conductances to GABA-Induced Depolarization in Spider Mechanosensory Neurons

Panek I, Höger U, French AS, Torkkeli PH. Contributions of voltageand Ca -activated conductances to GABA-induced depolarization in spider mechanosensory neurons. J Neurophysiol 99: 1596–1606, 2008. First published January 23, 2008; doi:10.1152/jn.01267.2007. Activation of ionotropic -aminobutyric acid type A (GABAA) receptors depolarizes neurons that have high intracellular [Cl ], causing inhib...

متن کامل

Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra.

GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (Na(V)) channels are crit...

متن کامل

Mechanisms of modulation of AMPA-induced Na+-activated K+ current by mGluR1.

Na(+)-activated K(+) (K(Na)) channels can be activated by Na(+) influx via ionotropic receptors and play a role in shaping synaptic transmission. In expression systems, K(Na) channels are modulated by G protein-coupled receptors, but such a modulation has not been shown for the native channels. In this study, we examined whether K(Na) channels coupled to AMPA receptors are modulated by metabotr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017